在高壓線獲得保護后,與高壓線連接的發、配電設備仍然被過電壓損壞,人們發現這是由于 “感應雷”在作怪。(感應雷是因為直擊雷放電而感應到附近的金屬導體中的,感應雷可通過兩種不同的感應方式侵入導體,一是靜電感應:當雷云中的電荷積聚時,附近的導體也會感應上相反的電荷,當雷擊放電時,雷云中的電荷迅速釋放,而導體中原來被雷云電場束縛住的靜電也會沿導體流動尋找釋放通道,就會在電路中形成電脈沖。二是電磁感應:在雷云放電時,迅速變化的雷電流在其周圍產生強大的瞬變電磁場,在其附近的導體中產生很高的感生電動勢。
開放間隙有太多的缺點,如擊穿電壓受環境影響大;空氣放電會氧化電極;空氣電弧形成后,需經過多個交流周期才能熄弧,這就可能造成避雷器故障或線路故障。以后研制出的氣體放電管、管式避雷器、磁吹避雷器在很大程度上克服了這些毛病,但他們仍然是建立在氣體放電的原理上。氣體放電型避雷器的固有缺點:沖擊擊穿電壓高;放電時延較長(微秒級);殘壓波形陡峭(dV/dt較大)。這些缺點決定了氣體放電型避雷器對敏感電氣設備的保護能力不強。
特殊避雷針
還有一些避雷針承認自己接閃雷電,但其保護范圍特別大,而且不會因為加裝了避雷針而增大雷擊概率。這一類產品在市場上的份額不大,沒多少人去深究其技術原理的可行性。但在標準中規定任何接閃器都只能按滾球法校核保護范圍。
引下線
一些廠家不在接閃器上作文章,卻在引下線上采取措施,他們認為接閃器接閃時大量的雷電流通過引下線入地,會在周圍的導體中產生感應雷,因此推出有屏蔽作用的引下線。必須指出:感應雷主要是由雷云的靜電感應引起的,只屏蔽引下線作用并不大,而是要加強所有導線的屏蔽效果,才能削弱感應雷。
其實,在國標《建筑物防雷設計規范》(GB50057—94)中,對金屬引下線的規定就已采取了降低引下線電磁干擾的措施,如多根引下線的分流作用,均勻對稱的布置在建筑物四周可相互抵消內部電磁場,利用建筑物的鋼筋框架這個很好的屏蔽籠(法拉第籠)接閃引下雷電流等。因此,普通金屬引下線的方法在技術經濟上都是可行的。

